

In silico определение антигенной специфичности опухоль-инфильтрирующих Т-лимфоцитов.

- 1. Разработать метод моделирования TCR-рМНС.
- 2. Определить способно ли силовое поле Rosetta отличать энергетические характеристики агонистов иммунных рецепторов.
- 3. Обучить модели бинарного классификатора.

<mark>ВВЕДЕНИЕ</mark>

 Т-клеточные рецепторы позволяют осуществлять лимфоцитам контроль за клеточным перерождением, вызванным вирусным заражением или опухолеобразованием. Внеклеточная часть рецептора состоит из двух цепей (α,β), каждая состоит из двух фрагментов иммуноглобулиновой укладки: константного и вариабельного. (Рис 2а)

а

 Вторым компонентом данной системы является комплекс ГКГ и антигенного пептида – продукта деградации протеома сканируемой клетки в протеосомах. Для активации лимфоцита важна ориентация цепей иммунорецептора по отношению к ГКГ, контролируемая связывание CD8 с βмикроглобулинном. (Рис 2b)

Рис. 1: а) ТК, б) он же, но сверху.

<u>ВВЕДЕНИЕ</u>

 Интерфейс молекулярного распознавания образуется центровым участком антигена (между якорными остатками) и CDR3 петлями иммунорецептора. (Рис. 3)

 Наибольшее влияние оказывает геометрическое соответствие молекулярных поверхностей, при этом конформация CDR3 может претерпевать изменение (до 1.5 A RMSD).

Рис. 2: слева, тройной комплекс целиком; справа, крупным планом: антиген (спектр), якорные остатки (сферически) и CDR3α, β (синим и красным соответственно).

TetTCR-seq

Информация о секвенированных ТСR с установленной специфичностью присутствует в нескольких открытых базах данных и была уже использована для обучения некоторых моделей классификаторов, например ERGO.

Zhang, SQ., Ma, KY., Schonnesen, A. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat Biotechnol 36, 1156–1159 (2018). https://doi.org/10.1038/nbt.4282

name	TRAV	TRAJ	TRA_CDR3	TRBV	TRBJ	TRB_CDR3
14770	TRAV14/DV4	TRAJ23	CAEIYNQGGKLIF	TRBV19	TRBJ1-1	CASSTPGGWNTEAFF
14773	TRAV5	TRBJ2-6	CAFSTAAGNKLTF	TRBV30	TRBJ1-2	CAWSVSVYYGYTF
14778	TRAV38-2/DV8	TRAJ43	CAYYANDMRF	TRBV29-1	TRBJ2-6	CSVEAGGVSEAFF
14780	TRAV38-2/DV8	TRAJ8	CAMSEGFQKLVF	TRBV27	TRBJ1-5	CASSPGQAEPQHF
14782	TRAV38-2/DV8	TRAJ3	CAVQSSYSSASKIIF	TRBV4-3	TRBJ1-6	CASSQEVGSSYNSPLHF

Табл. 1: Стандартное представление ТСR рецепторов в базах данных.

Рис. 3: схема эксперимента TetTCR-seq.

Моделирование по гомологии

Для моделирования по гомологии как TCR, так и рМНС удобно использовать Rosetta.

Для учёта подвижности CDR3 петель для каждой полученной модели можно произвести локальный конформационный поиск или моделирование молекулярной динамики.

Ragul Gowthaman, Brian G Pierce, TCRmodel: high resolution modeling of T cell receptors from sequence, *Nucleic Acids Research*, Volume 46, Issue W1, 2 July 2018, Pages W396–W401, <u>https://doi.org/10.1093/nar/gky432</u>

Рис. 4: TCRmodel, a) TCR, b) CDR3ab.

Alford R.F, Leaver-Fay, A., Jeliazkov, J.R. et al. The Rosetta all-atom energy function for macromolecular modeling. J Chem Theory Comput 13(6), 3031–3048. (2017). https://doi.org/10.1021/acs.jctc.7b00125

Процедура докинга

Для ограничения конформационного пространства используем подходящие геометрические параметры, описывающие активирующую ориентацию иммунорецептора на ГКГ:

- 1. Расстояние от центра массы пептида до центров масс CDR3 < 15А.
- Расстояния между центрами масс а и б цепи иммунорецептора и 2 и 1 альфа-спиралями ГКГ < 30А.

Dina Schneidman-Duhovny, Yuval Inbar, Ruth Nussinov, Haim J. Wolfson, PatchDock and SymmDock: servers for rigid and symmetric docking, *Nucleic Acids Research*, Volume 33, Issue suppl_2, 1 July 2005, Pages W363–W367, <u>https://doi.org/10.1093/nar/gki481</u>

Рис. 5: Геометрические ограничения для ТК.

Различие оценок энергии REF2015

Для выборки агонистов каждого из 200 ТК были построены 1 модель рецептора и 1 модель лиганда, и получены 5 лучших моделей PatchDock. Для выборки же антагонистов, для каждой модели рецептора всего было получено 5 моделей, по 1 для каждого из 5 случайно выбранных лигандов. Для всех моделей после докинга проводилась минимизация энергии с помощью моделирования Монте-Карло (FastRelax). Для каждой модели были рассчитаны энергии диссоциации и заглубленная поверхность доступная растворителю (dSASA). На полученной парной выборке рецептор-агонист:рецептор-антагонист был проведен парный односторонний t-тест.

1) dG = (
$$E_{TCR} + E_{pMHC} - E_{TCR-pMHC}$$
)/dSASA, [reu/nm²]

· H_0 : Нет разницы, в среднем, между энергией диссоциации для структур ТК с агонистом и антагонистом. (H_0 : $\mu = 0$)

· H₁: Модели нативных ТК изменяют энергию диссоциации сильнее при мутации а.о. эпитопа в аланины, чем случайные ТК. (H₁: μ < 0)

Значение <u>парного</u> одностороннего t-критерия t(200)=-3.83 и p=1.67×10-4, следовательно нулевую гипотезу H0 можно отвергнуть.

Рис 6. Распределения плотностей вероятности для dG для парных выборок агонист-неагонист.

Различие оценок энергии REF2015

· H₀: Нет разницы, в среднем, между изменением энергии диссоциации при мутации эпитопа в аланин для структур ТК с аффинным и случайным антигеном. (H₀: μ_d =0) · H₁: Модели нативных ТК изменяют энергию диссоциации сильнее при мутации а.о. эпитопа в аланины, чем случайные ТК. (H₁: μ_d >0)

При замене аффинного эпитопа на случайный, относительная разница изменений энергий диссоциации при мутации центральных позиций в аланин составила μ_d =7.209×10⁻² reu/nm2, 95% CI [3.938×10⁻², 1.047×10⁻¹]. σ_d =2.03×10⁻¹. Размер эффекта по Коэну d=0.4.

Значение парного одностороннего t-критерия t(200)=4.35 и p=1.1×10⁻⁵, следовательно нулевую гипотезу H_0 можно отвергнуть.

Рис. 7: Распределение плотности вероятности для значений Е_{гес} для парных выборок агонист-неагонист.

Табл. 2. ANOVA и коэффициенты логистической Классификатор PatchDock регрессии для выборки TCR х рМНС, РАТСНООСК.

F	p-value	TEPM	ОПИСАНИЕ	coef.
6.6112 29	1.01454 7e-02	as1	геометрическая комплементарность только на основе антигена	0.003706
59.149 924	1.57270 5e-14	as2	геометрическая комплементарность только на основе CDR3ab петель.	-0.004296
135.75 9883	3.29036 7e-31	as12	геометрическая комплементарность CDR3ab и антигена.	0.042945
5.1719 41	2.29717 9e-02	score	Комплементарность всего интерфейса	0.000298

Классификатор REF2015

Табл. 3. ANOVA и коэффициенты логистической регрессии для выборки TCR x pMHC, REF2015.

F	p-value	ТЕРМ	ОПИСАНИЕ	coef
7.63	0.006	dSASA_hphobic_WT	Площадь заглубленной гидрофобной поверхности на интерфейсе	-0.125 183
7.63	0.006	omega_pA	Омега угол пептидных связей рА	0.1750 43
7.16	0.007	omega_WT	Омега угол пептидной связи WT	-0.081 550
5.97	0.014	nres_int_WT	Число а.о. на интерфейсе WT	-0.142 679
4.68	0.031	dSASA_int_WT	Площадь заглубленной поверхности	0.0937 99
4.62	0.032	delta_unsatHbonds_WT	Число заглубленных водородных связей на интерфейсе	-0.077 462
4.02	0.045	nres_int_pA	Число остатков на интерфейсе рА	0.0879 77
3.98	0.046	fa_atr_WT	Притяжение потенциала Леннард-Джонса (диполь- дипольное индуцированное взаимодействие, электронная корреляция)	0.0509 26
3.95	0.047	rama_prepro_pA	Штраф за мутации пролина в аланины.	0.0315 92

11

<u>вывод</u>

- Разработан новый подход молекулярного моделирования TCR-рMHC комплексов.
- Показана его способность различать структуры агонистических ТК от случайных.
- Получены модели классификатора TCR-pMHC на основе логистической регрессии, дана оценка их эффективности.