Дизайн новых модуляторов ионотропных глутаматных рецепторов

<u>В.А. Палюлин</u>, М.И. Лавров, Д.С. Карлов, Е.В. Радченко, Н.С. Темнякова, А.А.Назарова, Д.А. Василенко, К.Н.Седенкова, Е.Б. Аверина, В.Л. Замойский, В.В. Григорьев

Химический факультет МГУ имени М.В.Ломоносова

Институт физиологически активных веществ РАН, Черноголовка

AMPA Receptor Positive Allosteric Modulators (PAMs)

Significance Statement

Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be mostly reversed by long-term, oral administration of a positive allosteric modulator of AMPA-type glutamate receptors. Dendritic recovery was accompanied by improvements to both synaptic plasticity and the encoding of long-term memory of a novel, complex environment. Because the short half-life compound had no evident negative effects, the results suggest a plausible strategy for treating age-related neuronal deterioration.

Cited from:

The Journal of Neuroscience, February 3, 2016 • 36(5):1636-1646

Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

Julie C. Lauterborn,^{1*} ^{(D}Linda C. Palmer,^{1*} Yousheng Jia,¹ Danielle T. Pham,¹ Bowen Hou,¹ Weisheng Wang,¹ Brian H. Trieu,¹ Conor D. Cox,¹ ^{(D}Svetlana Kantorovich,¹ Christine M. Gall,^{1,2*} and Gary Lynch^{1,3*}

General Structure of AMPA Receptor and Major Ligand-Binding Sites

Conformational Changes in the Functioning of AMPA receptor

Stephen F. Traynelis et al., Pharmacol. Rev. 2010, 62, 405–496.

Binding Site of Positive AMPA Receptor Modulators

Binding of the bivalent ligand

Two active fragments and the linker (spacer)

Selected for synthesis and synthesized 3,7-diazabicyclo[3.3.1]nonane derivatives

Selected for synthesis and synthesized 3,7-diazabicyclo[3.3.1]nonane derivatives

Reaction conditions: a) $N_2H_4*H_2O$; b) *t*-BuOK/PhMe; *c*) R¹COCI, CH₃CN/K₂CO₃, d) R₂COCI, CH₃CN/K₂CO₃.

M.I. Lavrov, D.S. Karlov, T.A. Voronina, V.V. Grigoriev, A.A. Ustyugov, S.O. Bachurin, V.A. Palyulin, *Mol. Neurobiol.*, **2020**, *57*, 191-199. 9

Physiological studies of new AMPA receptor modulators

Experimental biological studies have demonstrated extraordinarily high activity: 1000-10000 times higher than all known monovalent PAMs

Electrophysiological experiments

currents in rat Purkinje neurons

LD₅₀ of the best studied bivalent ligands was close to 5000 mg/kg.

M.I.Lavrov, V.V.Grigoriev, S.O.Bachurin, V.A.Palyulin, N.S.Zefirov, *Dokl. Biochem. Biophys.* **2015**, *464*, 322-324;

M.I.Lavrov, D.S.Karlov, T.A.Voronina, V.V.Grigoriev, A.A.Ustyugov, S.O.Bachurin, V.A.Palyulin, *Mol. Neurosci.*, **2020**, 57, 191-199.10

Passive avoidance model

Restoration of pharmacologically damaged memory

eventson and the second second

0.005 mg/kg of compound OSPL-502 in 5 min before training, 5 min or 4 hrs after training to reproduce the results of training after 24 hrs

OSPL-502 prevents amnesia caused by the blockade of protein synthesis in brain (24 h, 0,005 mg/kg).

Pre-clinical studies of a novel cognition enhancer

PAMs 2D QSAR Study: Molecular Field Topology Analysis (MFTA)

Structure-activity models based on local molecular parameters (atom properties)

Molecular supergraph

Common frame of reference for different structures

Local descriptors

- Q atomic charge
- Re effective group van der Waals radius
- Lg group lipophilicity
- H_d , H_a hydrogen bond donor/acceptor ability

Partial least squares regression (PLSR) modeling

Radchenko E.V., Palyulin V.A., Zefirov N.S., in *Chemoinformatics Approaches to Virtual Screening*, RSC, **2008**, 150-181.

Palyulin V.A., Radchenko E.V., Zefirov N.S., J. Chem. Inf. Comp. Sci., 2000, 40(3), 659-667.

Positive AMPA receptor modulators. Polycyclic benzamide derivatives

Training set: 111 compounds (consistent stereochemistry, compatible scaffolds, reliable activity measurements) Endpoint: $pEC_{2x} = log(1 / EC_{2x})$

MFTA molecular supergraph and mapping examples

Mueller R. et al., Bioorg. Med. Chem. Lett., 2011, 21, 3923, 3927, 6170, 7455.

MFTA model of PAM activity

Descriptors	N _F	R^2	RMSE	Q ²	RMSEcv
Q, R _e , L _g , H _a	5	0.83	0.43	0.55	0.70

 N_F = number of factors in the PLSR model, R^2 = squared correlation coefficient, RMSE = root-mean-square error,

 Q^2 = cross-validation parameter, RMSEcv = root-mean-square error of cross validation

MFTA activity maps

Preference for aryl or hetaryl moieties with polar hydrogen bond acceptor substituents, as well as for moderately polar and/or lipophilic open-chain substituents

E.V.Radchenko, D.S.Karlov, M.I.Lavrov, V.A.Palyulin, *Mendeleev Commun.* **2017**, 27, 623-625.

Red: activity increases Blue: activity decreases

PAMs Docking-Based 3D Alignment, 3D QSAR (CoMFA) and Pharmacophore

Steric Fields

Electrostatic Fields

CoMFA model: $n = 49, N_f = 4, R^2 = 0.75,$ $RMSE = 0.47, Q^2 = 0.56$

E.V.Radchenko, D.S.Karlov, M.I.Lavrov, V.A.Palyulin, *Mendeleev Commun.*, **2017**, *27*, 623-625.

Pharmacophore: VROCS program, OpenEye Scientific software

Alignment of 25 Diverse AMPA Receptor PAMs (PDB Experimental Data)

CoMFA Study of 25 Diverse AMPA Receptor PAMs

D.S.Karlov, M.I.Lavrov, V.A.Palyulin, N.S.Zefirov, Russ. Chem. Bull., 2016, 65, 581.

AMPA Receptor PAMs Molecular Dynamics Simulation. The Dimer of Ligand-Binding Domain + Positive Modulators (25 compounds)

AMBER14

AMPA Receptor PAMs Molecular Dynamics Simulation. The Dimer of Ligand-Binding Domain + Positive Modulators (25 compounds)

D.S.Karlov, M.I.Lavrov, V.A.Palyulin, N.S.Zefirov, J. Biomol. Struct. Dyn., 2018, 36(10), 2508–2516.

Alternative Binding Mode of Compound OSPL-502

Homology models: GluA1/GluA1, GluA1/GluA2, GluA1/GluA3, GluA1/GluA4, GluA2/GluA2, GluA2/GluA3, GluA2/GluA4, GluA3/GluA3, GluA3/GluA4, GluA4/GluA4, GluK1/GluK1, GluK1/GluK2, GluK1/GluK3, GluK1/GluK4, GluK1/GluK5, GluK2/GluK2, GluK2/GluK3, GluK2/GluK4, GluK2/GluK5, GluK3/GluK3, GluK3/GluK4, GluK3/GluK5.

M.I.Lavrov, D.S.Karlov, T.A.Voronina, V.V.Grigoriev, A.A.Ustyugov, S.O.Bachurin, V.A.Palyulin,

Mol. Neurosci., 2020, 57, 191-199.

Molecular docking of tricyclic 3,7-diazabicyclo[3.3.1]nonane derivative

The binding pose of the tricyclic compound: a) 3D structure of the complex of the compound and GluA2 LBD homodimer; b) a schematic representation of the binding site with the colour-coded atomic contributions of *Chemgauss4* score (the colour-codes are shown on the scale under the figure, the negative contributions increase binding).

M.I. Lavrov, D.S.Karlov, V.A.Palyulin et al., Mendeleev Commun., 2018, 28, 311-313.

Molecular docking of tricyclic 3,7-diazabicyclo[3.3.1]nonane derivative

Synthesis of tricyclic 3,7-diazabicyclo[3.3.1]nonane derivative

a) 18-crown-6/KOH/H₂O, 80 °C; b) NH₂OH·HCI/pyridine/EtOH; c) LiAIH₄/THF; d) K₂CO₃/CH₃CN, 60 °C.

M.I. Lavrov, D.S.Karlov, V.A.Palyulin et al., *Mendeleev Commun.*, **2018**, *28*, 311-313.

In vitro study (patch-clamp) of tricyclic 3,7-diazabicyclo[3.3.1]nonane derivative

The increase in kainate-induced currents relative to the control (M±SD,%). Asterisks mark p<0.05.

M.I. Lavrov, D.S.Karlov, V.A.Palyulin et al., Mendeleev Commun., 2018, 28, 311-313.

Virtual Screening of New Potential AMPA PAMs

DATABASES: ZINC druglike (18 M), ZINClick (4 M), Zelinsky (150 K)

DB preparation (protonation state, conformations, etc.) -> Shape filter (10%) -> Docking (2000 structures) -> Visual analysis -> Final selection (CoMFA, Binding energy, *in silico* ADME - LogBB, HIA, hERG,...)

30 structures were selected, then either synthesized (including close analogs) or purchased; their studies are in progress.

Shape Filter

Selected Structure

Evaluation of Blood-Brain Barrier Permeability

$$LogBB = \log \frac{C_{brain}}{C_{blood}}$$

http://qsar.chem.msu.ru/admet

Probably the most complete data set based on open quantitative published data – verified against original publications. Different transport mechanisms are not considered explicitly.

$$N = 529, Q^2 = 0.82, RMSE = 0.32$$

Comparable or better in accuracy and/or applicability domain compared to previously published models

A.S. Dyabina, E. V. Radchenko, V. A. Palyulin, N. S. Zefirov, *Dokl. Biochem. Biophys.*, **2016**, *470*, 371–374.

E. V. Radchenko, A.S. Dyabina, V. A. Palyulin, *Molecules*, 2020, 25, 5901.

Bivalent AMPA receptor positive allosteric modulators of bis(pyrimidine) series

A.A. Nazarova, K.N. Sedenkova, D.S. Karlov, M.I. Lavrov, Y.K. Grishin, T.S. Kuznetsova, V.L. Zamoyski, V.V. Grigoriev, E.B. Averina, V.A. Palyulin, *MedChemComm*, **2019**, *10*, 1615-1619. 28

Bivalent AMPA receptor positive allosteric modulators of bis(pyrimidine) series

Patch clamp (R = Me):

R	<i>n</i> , number of neurons	Currents (%) for various concentrations of compounds (M) (control 100%)								
		10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶		
Me	7	108±5	132±5	143±9	170±11	123±8	85±6	78±4		
Et	5	100±2	117±6	126±8	155±5	128±7	100±8	-		
<i>i</i> -Pr	4	100±2	84±5	72±6	82±7	92±4	98±5	_		
<i>t</i> -Bu	5	_	100±2	108±4	120±4	125±5	133±6	145±7		
<i>c</i> -Pr	5	_	100±2	100±2	95±4	96±3	97±2	96±5		

A.A. Nazarova, K.N. Sedenkova, D.S. Karlov, M.I. Lavrov, Y.K. Grishin, T.S. Kuznetsova,

V.L. Zamoyski, V.V. Grigoriev, E.B. Averina, V.A. Palyulin, MedChemComm, 2019, 10, 1615-1619. 29

Bivalent AMPA receptor positive allosteric modulator of bis-amide series

40% potentiation at 1 nM

N.S. Temnyakova, D.A. Vasilenko, M.I. Lavrov, D.S. Karlov, Y.K. Grishin, V.L. Zamoyski, V.V. Grigoriev, E.B. Averina, V.A. Palyulin, *Mendeleev Commun.*, **2021**, *31*, 216-219. 30

Conclusions

A series of new positive allosteric modulators of AMPA receptor based on 3,7-diazabicyclo[3.3.1]nonane and other scaffolds was designed.

Compounds demonstrate high activity (in picomolar range), highly positive effects in in vivo tests and extremely low toxicity.

Professor Nikolay S. Zefirov (1935-2017)

Acknowledgements

Biological testing:

Institute of Physiologically Active Compounds RAS, *Prof. S.O. Bachurin Dr. V.V. Grigoriev, Dr. V.L. Zamoiski*

Institute of Normal Physiology RAMS: Laboratory of *Prof. K.V. Anokhin*

Molecular Modelling and Synthesis (Department of Chemistry, MSU):

Dr. I.G.Tikhonova, Dr. M.I.Lavrov, Dr. V.L.Lapteva, Dr. E.V.Radchenko, Dr. D.S.Karlov, Dr. E.B.Averina Dr. K.N.Sedenkova, Dr. D.A.Vasilenko, Dr. P.N.Veremeeva, A.A. Nazarova, N.S. Temnyakova

This work is currently supported by Russian Science Foundation, Grant No. 17-15-01455

We thank OpenEye Scientific for software Academic License

Российский

научный