

Федеральное государственное бюджетное учреждение науки **ИНСТИТУТ БИООРГАНИЧЕСКОЙ ХИМИИ**

им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук Отдел структурной биологии Лаборатория моделирования биомолекулярных систем

Структурно-динамические характеристики лантибиотиков низинового типа в воде: исследование *in silico*

Тальдаев А.Х.¹, Панина И.С.^{2,3}, Ефремов Р.Г.^{2,3,4}

6 апреля 2021 года, Москва

¹Институт фармации им. А.П. Нелюбина, Первый МГМУ им. И.М. Сеченова

²Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

³НИУ «Высшая школа экономики»

⁴Московский физико-технический институт (НИУ)

Липид II

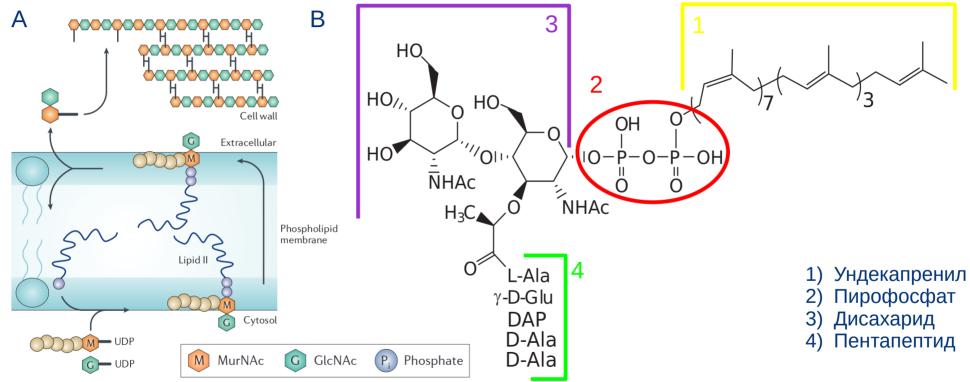
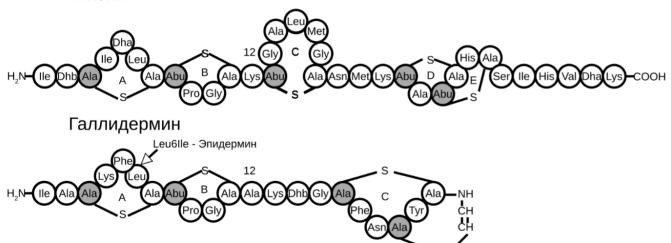


Схема биосинтеза пептидогликана клеточной стенки бактерий

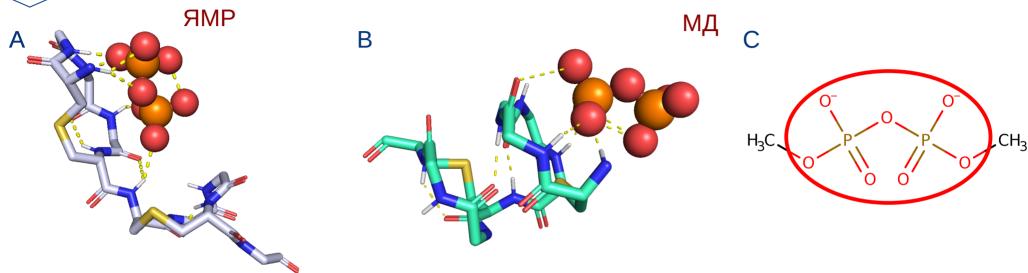

Структурная формула липида II

Лантибиотики

Лантибиотики представляют собой посттрансляционно модифицированные катионные антимикробные пептиды, содержащие неканонические аминокислотные остатки, например, лантионин, метиллантионин, дегидроаминобутерин, дегидроаланин и т.д.

Низин

Ala-S-Ala — лантионин, Abu-S-Ala — метиллантионин, Dha —дегидроаланин, Dhb —дегидроаминобутерин. Серым цветом показаны D-аминокислоты.


Активность лантибиотиков на <i>L. lacti</i> s subsp. <i>cremoris</i> HP [2]			
Лантибиотик	биотик МИК* (мкМ)		
Низин	0,048		
Галлидермин	0,005		
Эпидермин	0,002		

^{*}МИК — Минимальная ингибирующая концентрация

^[1] Bonelli, Raquel Regina, et al. "Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies." Antimicrobial agents and chemotherapy 50.4 (2006): 1449-1457.

Комплекс низин: липид II

Комплекс низина с липидом II в ДМСО (PDB ID: 1WCO) [1]

Ранее показанная конформация «ловушки» низина₁₋₁₁ в водном окружении [2]

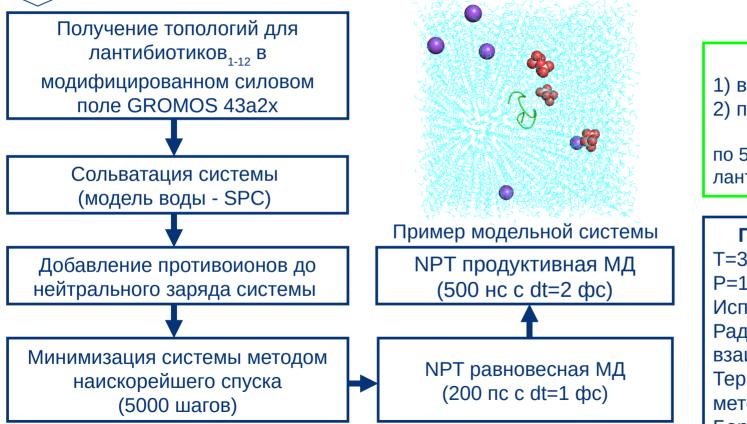
Структурная формула иона диметилпирофосфорной кислоты (ДМПФ)

[1] Hsu, Shang-Te D., et al. "The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics." Nature structural & molecular biology 11.10 (2004): 963-967.

[2] Panina, Irina, et al. "Environmental and dynamic effects explain how nisin captures membrane-bound lipid II." Scientific reports 10.1 (2020): 1-14.

Цель и задачи

Цель исследования


С целью дизайна новых антибиотиков установить структурно-динамические характеристики низина₁₋₁₂, галлидермина₁₋₁₂ и эпидермина₁₋₁₂в присутствии и без ионов ДМПФ, имитирующими основную детерминанту связывания липида II, методом молекулярной динамики (МД).

Задачи исследования

- 1) Изучение конформационных ансамблей лантибиотиков
- 2) Сравнение лантибиотиков между собой

Материалы и методы

Схема эксперимента

- 1) в присутствии ионов ДМПФ
- 2) при отсутствии ионов ДМПФ

по 5 независимых стартов для лантибиотиков₁₋₁₂ с/без ионов ДМПФ

Параметры моделирования

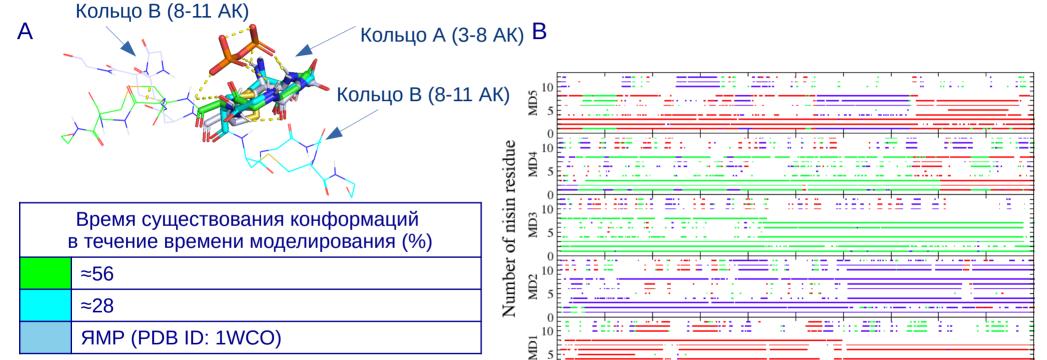
T=315 K

Р=1 бар

Использовали алгоритм LINCS Радиус отсечки по нековалентным

взаимодействиям: 0,12 нм

Термостат:


метод пересчета скоростей

Баростат: Берендсена

[3] Abraham, Mark James, et al. "GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers." SoftwareX 1 (2015): 19-25.

Результаты: низин₁₋₁₂

DMPPi 1 DMPPi 2

DMPPi 3

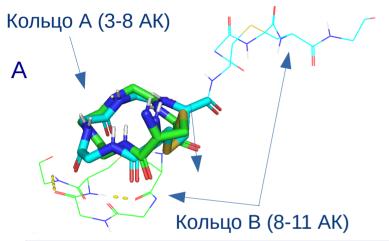
100

200

Time (ns)

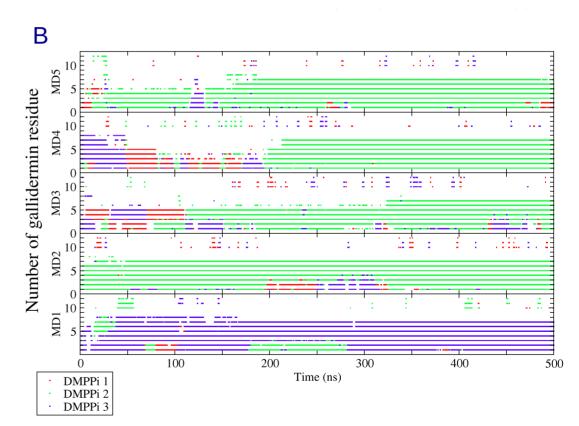
300

400


500

А. Суперпозиция по кольцу А конформаций низина₁₋₁₂

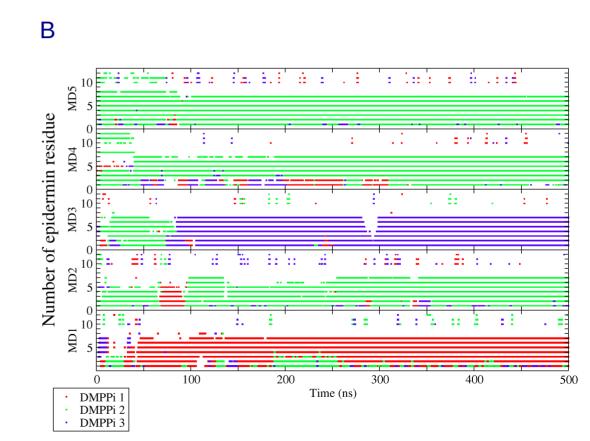
В. Карта межмолекулярных водородных связей между низином₁₋₁₂ и ионами ДМПФ



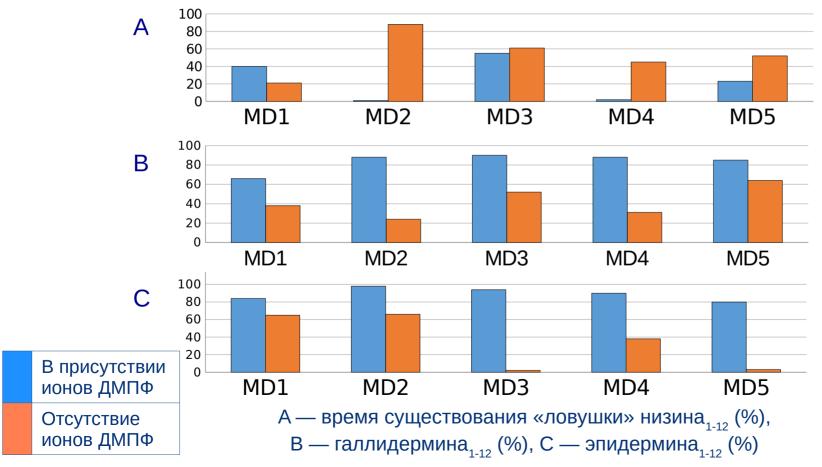
Результаты: галлидермин₁₋₁₂



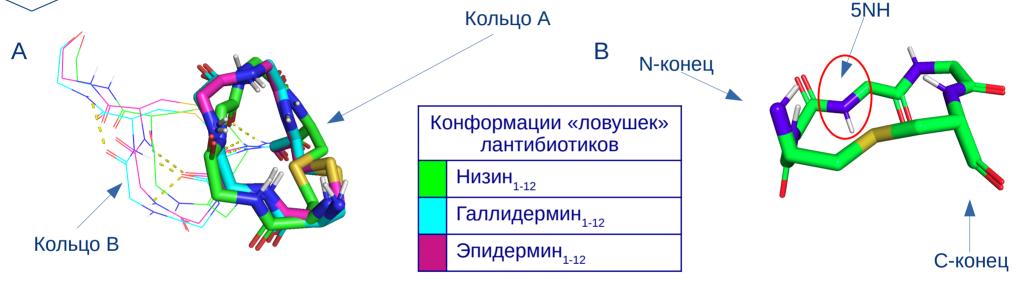
А. Суперпозиция по кольцу А наиболее вероятных конформаций галлидермина₁₋₁₂ В. Карта межмолекулярных водородных связей между галлидермином₁₋₁₂ и ионами ДМПФ



Результаты: эпидермин₁₋₁₂



А. Суперпозиция по кольцу В наиболее вероятных конформаций эпидермина₁₋₁₂ В. Карта межмолекулярных водородных связей между эпидермином₁₋₁₂ и ионами ДМПФ



Результаты: «ловушки»

Результаты: «ловушки»

Лантибиотик	Время существования «ловушки» (%)	Расстояние между центрами масс колец А и В (Å)	Число внутримолекулярных Н-связей	φ ₅ (°)
Низин ₁₋₁₂	28	1,3	2	168
Галлидермин ₁₋₁₂	85	1,3	3	-68
Эпидермин ₁₋₁₂	89	1,3	3	-66

Выводы

- 1) Наибольшее число межмолекулярных водородных связей с ионом ДМПФ, имитирующим основную детерминанту связывания липида II, образуется в конформации «ловушки», которая обнаружена у всех лантибиотиков низинового типа.
- 2) Аминокислотный состав существенно влияет на образование и время существования конформации «ловушки» . Формирование этой конформации затруднено у низина₁₋₁₂ по сравнению с галлидермином₁₋₁₂/эпидермином₁₋₁₂.
- 3) Наличие ионов ДМПФ индуцирует сдвиг конформационного равновесия в сторону большей заселенности конформации «ловушки».

Спасибо за внимание!