

Biomedical Knowledge Graphs: Development and Application to Drug Discovery and Repurposing.

Alexander Tropsha UNC Eshelman School of Pharmacy

Biomedical Data Translator

"Two hundred years ago, chemists created a comprehensive enumeration of the elements and systematic relationships among them. We envision the Translator doing the same for translational science."

- Christopher P. Austin, MD, director of NCATS, with Christine M. Colvis, PhD, Noel T. Southall, PhD

Enhance (but not replace) human reasoning, move beyond symptom-based definitions of disease toward a more mechanistic understanding

2

Austin CP, Colvis CM, Southall NT. Deconstructing the translational tower of babel. *Clin Transl Sci* 2019;12(2):85. <u>doi:10.1111/cts.12595;</u>

Fecho K, et al. The Biomedical Data Translator Consortium. Toward a universal biomedical data translator. Clin Transl Sci 2019;12(2):91–94. <u>doi:10.1111/cts.12591.</u>

From Data to Serendipity

Scientific literature as a source of data: Swanson's ABC approach to drug discovery via text mining*

Don R. Swanson < Vasodilation American information scientist Spreading cortical depression Platelet aggregation B **Biochemical** effects Relationships established Relationships established through co-occurrence of through co-occurrence of terms terms С A Disease Chemicals Magnesium **Deduced relationship Migraine**

> *Swanson DR. Medical literature as a potential source of new knowledge. Bull Med Libr Assoc 1990;78(1):29–37

Chemotext (chemotext.mml.unc.edu)

- A publicly-available Web server that mines the entire PubMed using Medline Subject Heading (MeSH) terms
 - » Data retrieved from the MEDLINE/PubMed Baseline Repository (MBR)
 - » Chemotext database contains ca. <u>30M</u> articles and <u>100K</u> connections (vertices) between terms
 - » Connections are made based on MeSH terms
 - » Chemical terms = A
 - » Protein/Pathway terms = B
 - » Disease terms = C
- Mining PubMed affords rapid identification of connections between vertices and enabling new inferences of such connections

Capuzzi SJ, et al., Chemotext: A Publicly Available Web Server for Mining Drug-Target-Disease Relationships in PubMed. J Chem Inf Model. 2018 58(2):212-218

MeSH terms

Airway Remodeling/physiology* Animals Asthma/chemically induced Asthma/metabolism Asthma/physiopathology* Benzamides/pharmacology Bronchi/drug effects Bronchi/metabolism Bronchi/pathology Bronchial Hyperreactivity/chemically induced Bronchial Hyperreactivity/metabolism Bronchial Hyperreactivity/physiopathology* Cells, Cultured Chemokine CCL2/metabolism Disease Models, Animal Female Humans Imatinib Mesylate In Vitro Techniques Interleukin-13/metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Myocytes, Smooth Muscle/pathology Myocytes, Smooth Muscle/physiology* Ovalbumin/adverse effects Piperazines/pharmacology Proliferating Cell Nuclear Antigen/metabolism Protein Kinase Inhibitors/pharmacology Proto-Oncogene Proteins c-abl/deficiency Proto-Oncogene Proteins c-abl/genetics Proto-Oncogene Proteins c-abl/physiology* Pyrimidines/pharmacology

Shared Terms Module

• Two query terms are input, and co-occurring terms that are shared between the queries are returned.

6

Filter

Chemotext (chemotext.mml.unc.edu)

Establishing Clinical Outcomes Pathways (COPs) of drug action

- COPs explain how a drug elicits its effect on a disease
- Chemotext can be used to elucidate COPs

Translator System Architecture

Fecho K, et al. Clin Transl Sci 2019;12(2):91–94. doi:10.1111/cts.12591.

ROBOKOP (Reasoning Over Biological Objects in Knowledge Oriented Pathways): High-level Concepts Connected by Knowledge Sources

Robokop.renci.org

"Why does imatinib help people with asthma?"

"Why does clonadine interact with propranolol?"

"Why is sickle cell disease protective against malaria?"

______ support

- Current KG incldues ca. 600K nodes and 12+M edges.

Bizon C, Cox S, Balhoff J, Kebede Y, Wang P, Morton K, Fecho K, Tropsha A. ROBOKOP KG and KGB: Integrated Knowledge Graphs from Federated Sources. J Chem Inf Model. 2019, 59(12):4968-4973 Morton K, Wang P, Bizon C, Cox S, Balhoff J, Kebede Y, Fecho K, Tropsha A. ROBOKOP: An Abstraction Layer and User Interface for Knowledge Graphs to Support Question Answering. Bioinformatics. 2019 35(24):5382-5384 Assertions on relationship & supportive evidence

Case study: query ROBOKOP for carbon monoxide – multiple sclerosis association.

Α.

Natural Language Question

What genes might mediate the association between workplace exposure to carbon monoxide and multiple sclerosis?

Β.

Machine Question or Meta-Graph

D. Answer Table

COPs built using knowledge graphs

no drug	n1: Gene n2: B	iological Process or Activity	n3: Cell	n4: Anatomical Entity	disease
Ketamine	N-Methyl-D- Aspartate	Neurotrans- mission	Neurons	Central Nervous System	Depressive Disorder
Glipizidine	Potassium ATP channel	Potassium ion transport	Beta cells	Liver	Diabetes Mellitus, Type2
Maraviroc	C-C chemokine receptor type 5	Cell-cell signaling	Leukocytes	Immune System	Acquired Immunodefic iency Syndrome
Mizolastine	Histamine H1 receptor	Cellular response to histamine	Mast Cells	Immune System	Rhinitis, Allergic, Seasonal
Dipyridamole	Equilibrative nucleoside transporter	Nucleoside transport	Blood Platelets	Circulatory System	Thrombosis

Clinical Outcome Pathways for known drugs and their indications

<u>FDA Approved</u> <u>Drugs</u>	<u>Molecular Initiating</u> <u>Events</u>	Intermediate Events	<u>Clinical Outcomes</u>
H ₃ C - N HN HN HN HN HN HN HN HN HN HN HN H	AMPK Activation	 Inhibition of glucagon- induced increase in cAMP concentration Decreased gluconeogenesis in the liver 	Decreased insulin tolerance, and better control of blood glucose levels in patients with type II diabetes mellitus
Natalizumab	Leukocyte α 4-integrin Natalizumab α 4-integrin Inhibition	 Inhibition of α-4-integrin binding to VCAM receptors on epithelial cells of blood- brain barrier Decreased migration of lymphocytes into CNS 	Decreased adaptive neuroimmune response, which decreases symptoms and disease progression in patients with multiple sclerosis
Diazepam	GABA _A Receptor Modulation	 Increased response to GABAergic signaling in CNS Enhanced hyperpolarization of CNS neurons leading to neuronal depression 	Symptom reduction in patients with generalized anxiety disorder and/or panic disorder

Clinical Outcome Pathways for known drugsin Meleon and proposed indications (*i.e.*, repurposing)

COP for the approved indication for famotidine, gastroesophageal reflux disorder (GERD)

Proposed COP to explain the clinical observation that famotidine reduces COVID-19– related mortality Knowledge mining approaches to find synergistic drug combinations against COVID-19

Example of a rationale behind drug mixture selection

Korn et al., COVID-KOP: Integrating Emerging COVID-19 Data with the ROBOKOP Database. ChemRxiv. 2020 Jun 18. doi:10.26434/chemrxiv.12462623.

Bobrowski et al, Discovery of Synergistic and Antagonistic Drug Combinations against SARS-CoV-2 In Vitro. *Mol Ther*. **2021** Feb 3;29(2):873-885. DOI: 10.1016/j.ymthe.2020.12.016

Experimentally confirmed pairs of synergistic or antagonistic drug combinations (CPE assay, NCATS)

Amodiaquine (nM)

Example: Nitazoxanide/Amodiaquine synergistic combination

Bobrowski et al, Discovery of Synergistic and Antagonistic Drug Combinations against SARS-CoV-2 In Vitro. *Mol Ther.* **2021** Feb 3;29(2):873-885. DOI: 10.1016/j.ymthe.2020.12.016

Summary

- Accumulation of multiple biomedical datasets creates new opportunities for data integration and knowledge mining
- Knowledge graph provide powerful means to mine pathways connecting biomedical entities of interest
- Elucidation of Clinical Outcome Pathways supports
 novel drug repurposing hypotheses
- Emerging application of machine learning approaches to knowledge graph mining accelerates the discovery of unknown biological pathways such as those linking drugs and diseases

Acknowledgements

Principal Investigator Alexander Tropsha

Research Professors

Alexander Golbraikh Eugene Muratov

Postdoctoral Fellows

Vinicius Alves Cleber Melo-Filho

Graduate students

Andrew Thieme Dan Korn Josh Hochuli

<u>Collaborators:</u> DT/ROBOKOP

RENCI/SOM:

Stan Ahalt Kara Fecho Chris Bizon Steve Cox David Peden Emily Pfaff COVAR:

> Kenny Morton Patrick Wang

MAJOR FUNDING

ONR

NIH

- 1U01CA207160
- R01-GM114015
- 5U54CA198999
- 10T3TR002020
- OT2TR002514

- N00014-16-1-2311