Chemography approach to Chemical Space exploration

Alexandre Varnek

University of Strasbourg, France ICReDD, Hokkaido University, Japan

XXVII Symposium on Bioinformatics and Computer-Aided Drugm, 5th April 2021

Sizes of selected chemical data collections

Public

Data visualization: dimensionality reduction problem

Data space (N-dimensional) Latent space (2-dimensional)

Dimensionality reduction methods

Acetylcholinesterase dataset (DUD) : 100 actives and 100 inactives **ISIDA descriptors**

Multi-Dimensional Scaling

Canonical Correlation Analysis

Independent **Component Analysis**

Exploratory Factor Analysis

Sammon map

PC 2 (14%) PC 1 (32.6%) Kernel PCA (polynomial kernel)

Isomap

Locally Linear Embedding

Laplacian Eigenmaps

t-SNE

SOM

Generative Topographic Mapping

GTM generates a data probability distribution in *both initial and latent data spaces*.

This opens an opportunity to use GTM not only to visualize the data but also for structure-property modeling tasks

• C. M. Bishop Pattern Recognition and Machine Learning. 2006 Springer

[•] N. Kireeva. I.I. Baskin. H. A. Gaspar. D. Horvath. G. Marcou and A. Varnek. Mol. Informatics. 2012. 31. 201-312 5

Projection of an object on GTM is described by the probability distribution (*responsibilities*) over the lattice nodes.

GTM descriptors for molecules and datasets

Map resolution: $N_{nodes} = K^*K$ Standard setting: K = 25, $N_{grid} = 625$

Molecule \longrightarrow responsibilities' vector $\{R_{tk}\}$ of N_{nodes} length

Dataset — hormalized cumulated responsibilities' vector of **N**_{nodes} length

GTM landscapes

Properties mapping

political map

physical map

population density

Case study: chemical space of metal binders

Data: 102 organic molecules which complex the Lu³⁺ cation in water

GTM of Lu³⁺ binders

Activity landscape for Lu³⁺ binders

Activity landscape for Lu³⁺ binders

H. A. Gaspar . I. I. Baskin. G. Marcou. D. Horvath. A. Varnek Mol. Informatics, 2015, 34 (6-7), 348-356

Activity landscape for Lu³⁺ complexation

H. Gaspar, I. Baskin, D. Horvath, G. Marcou, A. Varnek Mol. Informatics, 2015, 34 (6-7), 348-356

Class landscapes

ChEMBL (1.7 M cmds) : class landscape of antiviral compounds

exclusively inactives

mixture actives/inactives

exclusively actives

K. Klimenko, G. Marcou, D. Horvath, A. Varnek J. Chem. Inf. Model, 2016, 56, 1438–1454

GTM Landscape as predictive tool

Activity landscape

Universal maps: application to virtual screening

GTM activity or class landscape

Universal maps: application to virtual screening

GTM

In silico designed with GTM and experimentally validated compounds

- Antiviral compounds
- Antimalarial compounds
- Solvents for Li-batteries
- Bromodomain (BRD4) inhibitors

GTM : areas of application

de novo design

GTM : case studies

- Visualisation and analysis of ultra-large data
- Artificial Intelligence driven design of novel molecular structures and reactions

ChemSpace Atlas

Universal Map of chemical space

What do we expect from an "universal" map?

Map of a chemical space is expected:

- to accommodate variety of known chemotypes;
- to be able to distinguish different activity classes;
- to separate actives and inactives within a given activity class;
- to be *neighbourhood behaviour (NB)* compliant, e.g., molecules grouped together are expected to display similar activities

«Universal » map

- Defines a frame of a relevant space
 Acc
 - Accommodates different landscapes

Highly prospective mineral regions

Gold production by country

«Universal » map

- Defines a frame of biological relevant chemical space
- ISIDA fragment descriptors are used
- Constructed on the basis of ChEMBL database compounds
- Predicts of > 700 biological activities

Density landscape of the ChEMBL database (1.7 M cmds)

MAP kinase p38 alpha

Cyclin-dependent kinase 2

Phosphodiesterase 5A

Vascular endothelial growth factor receptor 2

Serine/threonine-protein kinase AKT

Inactive

Adenosine A2a receptor

«Universal » map

chemotypes distribution

ChEMBL density landscape

R1: Thiophenes $\begin{array}{c}
\downarrow \circ \\ \circ \\ \circ \\ \circ \\ \end{array}$ R3: Heterocyclic amides $\begin{array}{c}
N = N \\ + \\ + \\ + \\ + \\ + \\ \end{array}$ R4: Ponzonoulphonomidos

R2: Thiazoles

R5: Spiro-heterocyclic amides and carbamites

R4: Benzensulphonamides

R6: Halloginated heterocycles

ChemSpace Atlas

Main features

- polyvalent tool based on the GTM Universal Map
- accomodates > 3 billion cmpds
- assembles > 40000 hierarchically related maps of different scale and > 1.5 million activity landscapes

Main options

- Data visualization, search, subsets selection
- Automatized extraction of Maximal Common Structures
- Scaffold analysis
- Projection of new compounds
- Pharmacological profiling with respect to >700 biological targets

ChemSpace Atlas

The tool consists of 4 main parts:

Screening Compounds

Building Blocks

Natural Products

DNA-Encoded Libraries

ChemSpace Atlas discovery of synthetic analogs of natural products

ChemAtlas NP database:

253 893 Natural Products + 586 235 synthetic analogs from ZINC

Active against **Monoamine oxidase B** (*Rattus norvegicus*)

NP-like NP 100 90 80 70 60 50 40 30 20 10 0 Structures and activity profiles of synthetic analogues

NATURAL PRODUCTS NAVIGATOR

Dashboard

START HERE

Welcome

ANALYSIS

Q Chemspace tracker

Activity prediction

Welcome to the Natural Products Navigator ! You are connected as Guest.

View: By Targets X By Compounds

Compounds

ZINC00000040327

<u>CHEMBL2993</u>: Monoamine oxidase B (Rattus norvegicus)

CHEMBL2039 : Monoamine oxidase B (Homo sapiens)

CHEMBL2039 : Monoamine oxidase B (Homo sapiens)

Predicted activity

(Target ID)

ZINC000016138715

ZINC000001754404 ZINC000012417143

ZINC000002015852 ZINC000020232188

<u>CHEMBL2039</u>: Monoamine oxidase B (Homo sapiens) <u>CHEMBL4376</u>: Dual-specificity tyrosine-phosphorylation regulated kinase 2 (Homo sapiens)

<u>CHEMBL2993</u>: Monoamine oxidase B (Rattus norvegicus)

ZINC000005218035

DOWNLOAD

Guest

Ø	NATURAL PRODUCTS NAVIGATOR	Welcome to the Natural Products Navigator ! You are connected as Guest.		🔔 Guest 📢	
Dashboard		View: By Targets 🕖 🖌 By Compounds 🗙 🔵			
START HERE		ChEMBL Target ID	Name of the target	Number of predicted hits	
Welcome		<u>CHEMBL2039</u>	Monoamine oxidase B Homo sapiens	256	See the hit list
Q Chemspace tracker		<u>CHEMBL2993</u>	Monoamine oxidase B Rattus norvegicus	76	See the hit list
Ac	tivity prediction	CHEMBL312	Arachidonate 5-lipoxygenase Rattus norvegicus	33	See the hit list
		CHEMBL2003	Retinoic acid receptor gamma Homo sapiens	29	See the hit list
		CHEMBL242	Estrogen receptor beta Homo sapiens	24	See the hit list
		CHEMBL4376	Dual-specificity tyrosine-phosphorylation regulated kinase Homo sapiens	19	See the hit list
		CHEMBL2186	Carbonic anhydrase XIII Mus musculus	14	See the hit list
		CHEMBL1860	Thyroid hormone receptor alpha Homo sapiens	11	See the hit list
		CHEMBL5339	G-protein coupled receptor 120 Homo sapiens	10	See the hit list
		CHEMBL324	Serotonin 2c (5-HT2c) receptor Rattus norvegicus	10	See the 31

pubs.acs.org/jcim

Chemography: Searching for Hidden Treasures

Yuliana Zabolotna, Arkadii Lin, Dragos Horvath, Gilles Marcou, Dmitriy M. Volochnyuk, and Alexandre Varnek*

J. Chem. Inf. Model. 2021, 61, 1, 179–188

Initial gold-bearing ore

Gold-enriched ore

Pure gold

Commercial vs Biologically relevant data

Commercially available chemotypes

>1.3 billion cmpds

Biologically relevant chemotypes

Commercial vs Biologically relevant data

Maximum Common Substructure (MCS)

Commercial vs Biologically relevant data

De novo design of molecules possessing desirable biological activity

Autoencoder performing SMILES reconstruction

Building GTM on latent variables of autoencoder

Latent variables (vector on real numbers)

Trained Encoder

GTM

Generation of novel structures from specific areas of the map

Case study: Generation of inhibitors of A2a receptor

- Generated structures are enriched with new scaffolds
- According to docking experiments they are efficiently able to bind A2a

Al-driven design of new types of chemical reactions

- 13 new (with respect to the training data) Suzuki-like reactions have been detected
- 5 of them have been found in recent publications

Collaboration

- ITN Marie-Curie BigChem
- Federal University of Kazan
- Chumakov Research Center RAS
- Enamine
- eMolecules
- Janssen Pharmaceutical
- TOTAL
- SOLVAY